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Abstract: The Lorentz Sphere is a hypothetical spherical volume element, inevitably, invoked to take 

into account the demagnetizing effects (in the case of diamagnetic materials) while describing the 

contributions to the induced fields at a point inside magnetized materials. Till now, there have not been 

any compelling necessity to know the actual magnitudes of the contributions from within this sphere and, 

how exactly to demarcate this spherical part of the material by a concrete boundary, within the bulk 

material of the specimen. Not much emphasis could be given in the discussions on the significance of the 

Lorentz sphere, except that, it be defined as a semi-micro volume element. This situation seems to have 

been brought to prominence by the discussions requiring interpretation of the experimental results by the 

technique of Solid State High Resolution Proton Magnetic Resonance (HR PMR) in single crystals of 

organic molecules. It is this perspective which is being discussed in this paper. 
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1.Introduction 

The widths of the Nuclear Magnetic Resonance (NMR) 

spectral lines in solids are large (can be up to 100 KHz) 

compared to the line widths in the NMR spectra (0.2Hz) 

obtained in liquid state [1]. The nuclear Shielding 

differences, to be measured as Proton Chemical Shifts, can 

be several orders of magnitude smaller than the relatively 

large widths of the spectral lines. Such large line widths 

are inherent due to the nuclear spin-spin (proton-proton 

magnetic dipolar) interactions in the solid-state PMR. In 

the liquid state because of the rapid tumbling motions of 

the molecules, the dipolar interaction averages out to zero 

and what is measurable experimentally as line width are 

merely the in-homogeneities of the externally applied 

static fields. Line-narrowing multiple-pulse NMR 

techniques are used in the solid state PMR, to 

appropriately and selectively average out the nuclear 

magnetic dipole-dipole interactions for the determination 

of the Shielding Tensor of protons in single crystals of 

organic molecules [2]. The Shielding Tensor parameters 

thus obtained are useful in understanding the trends of the 

induced field contributions at the proton site due to 

electron circulations induced in the molecules in which the 

protons remain bonded while the molecules themselves 

occupy the symmetry related lattice sites. But to arrive at 

such intra-molecular contributions, it is necessary to 

recognize the criticality of the shapes of the specimens 

used in the measurements and the discrete nature of the 

contributions from the adjacent molecules. The induced 

field contributions at the proton site due to the bulk 

susceptibility would be specimen-shape dependent; while, 

the intermolecular contributions from the adjacent 

molecules would be reflecting the symmetry of the lattice 

with reference to the proton locations. All these various 

factors contribute essentially by the same field-inducing 
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mechanism and hence these contributions cannot be 

disentangled on the basis of mechanistic differences in the 

basic interactions. While arriving at the values for the 

intra-molecular shielding differences from the 

measurements made on macroscopic specimens, it 

becomes necessary to make measurements on specimens 

of well-specified shapes to quantitatively account for the 

macroscopic shape dependent contributions at the nuclear 

site. If this is accomplished, then the intermolecular 

contributions from the adjacent molecules have to be 

accounted for before arriving at the only intra-molecular 

contributions so that these could be interpreted for the 

variations in induced field attributable to the molecular 

structure and bonding. 

Thus it became necessary to find out methods for 

calculating the contributions due to the adjacent molecules 

by a suitable discrete summation procedure.  Such an 

effort could clearly establish that several of the 

discrepancies encountered till then (while interpreting 

proton shielding tensors in molecular systems), were 

mainly due to the fact that the discrete contributions from 

the other molecules were not properly taken into account 

even if the bulk susceptibility contributions from the 

farther continuum were reasonably taken into account. 

 
2. Sample Shapes for HR PMR Studies 
Since, the induced field contributions due to the bulk 

susceptibility at a proton site, and at any point within the 

specimen, is zero for a spherical macroscopic shape of the 

specimen; the proton HR PMR measurements are made 

with spherically shaped samples.  

As an aside, it is necessary to mention at this point, that 

making spherically shaped specimens (from the shapes of 

the specimen with the shapes resulting from the crystal 

growing processes and the inherent morphological 

determining factors) is not a simple task, and hence is not a 

matter of routine. This restricts the utility of this technique 

which otherwise would be a method which can provide 

much greater structural and bonding details becoming a 

potential technique for the wealth of information 

obtainable. In fact, much of the effort to be described here 

stands to be justified, first and foremost, for the possibility 

that the constraint on shape may become less stringent. 

As stated above the spherical shape (of the specimen) has 

the preferential advantage, and, this is explainable on the 

following basis: the demagnetization factors are defined 

for the specific shape of the surface that can be depicted to 

be enclosing the material continuum with homogeneous 

magnetization. If a cavity is carved out “within” such a 

continuum, and, if the inner cavity shape is the same as the 

outer macroscopic shape, then the inner cavity can be 

assigned the same demagnetization factor value as for the 

outer surface but with an opposite sign. This is because of 

the  fact that the inner surface encloses cavity without any 

material filling. In most of such discussions assigning a 

default demagnetization factor value depending only on 

the shape (and not on the size) was a matter of simple 

symmetry arguments [3] for the spherical shape. Thus, if 

the outer shape of the specimen is sphere (with an 

assigned demagnetization factor Dout) and, if a 

hypothetical spherical cavity inside is carved out (for 

which the demagnetization factor Din is equal to Dout but 

opposite in sign) around the specific site, then the induced 

field would be zero. This is so because the 

demagnetization factor (Dout+ Din) occurs as a shape 

dependent pre-multiplying factor in the expression for 

induced fields within the specimen [4].   With these 

considerations the HR PMR experiments on single 

crystalline solids were carried out on spherically shaped 

specimens. Further, there was the prevailing practice of 

using spherical sample tubes for the HR PMR studies in 

solution and, thus, it was possible to obtain reliable 

corrections [4] for bulk susceptibility contributions in 

solutions. Because of these solution-state results, the 

following fact was not apparent to researchers, that, in 

solids the discrete contributions from within the sphere of 

Lorentz have to be explicitly calculated and subtracted 

from the experimental shielding tensor values to get the 

only molecular contributions evaluated [5]. This is a 

specific aspect, which makes this topic relevant 

exclusively for the solid state physicists in the context of 

studies on dielectric and magnetized materials. Several 
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efforts to account for the line-shapes and line widths of 

PMR lines have been documented in the literature [6].  In 

spite of all the efforts, it is only the HR PMR studies on 

single crystalline samples, which establishes the 

significance of contributions from within the Lorentz 

sphere. While pursuing the efforts to calculate the induced 

field contributions from the dipoles located within the 

Lorentz sphere, the following question had to be answered. 

How far from the proton site should the dipoles be 

considered; to be convinced that the induced filed 

contributions from “Lorentz sphere” have been taken into 

account completely; and, none of the dipoles, which can be 

considered as part of the continuum, have to be included 

in the discrete summation? A natural consequence of 

trying to calculate the contribution from within a sphere 

was that at an appropriate radius from the specified site, 

the summed up contributions reaches a limiting value, and 

increasing the radius beyond that value does not contribute 

to the sum significantly Fig.1.     
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Fig.1 The graphical plot of the sum of the contributions from 
within Lorentz sphere as a function of the radius of the sphere. 
The sum reaches a Limiting Value at around 50Aº. These are 
values reported in a M.Sc., Project (1990) submitted to N.E.H. 
University. T.C. stands for (shielding) Tensor Component 
                                 
Thus, there was a clear delineation possible for the Lorentz 

Sphere to be demarcated from the remaining bulk as 

depicted in Fig.2. This value of 50 A˚  would vary from 

system to system but the fact remains that the discrete 

summation around the specified lattice point can 

unambiguosly indicate a definite numerical value for the 

radius of the Lorentz sphere for demarcation.  This makes 

the Lorentz sphere a precisely defined sphere with a 

surface boundary line unlike the way it is to be left 

undefined as to the numerical values for the construction 

of a Lorentz sphere.                                                                

 
                                                                                 
 
 
 
 
 
 
 
 
                                                                       
 
Fig.2.  The demarcation (~50Aº radius) of the inner Lorentz 
Sphere from the outer macroscopic continuum. The Lorentz 
Sphere is supposed to be semi-micro and the above depiction is 
an exaggeration for the size of the inner sphere. 
 

3. Calculations by Discrete Summation  

As depicted in Fig.2 the molecules may be considered as 

located in lattice points within the Lorentz sphere and, by 

definition, this being of semi micro dimensions, the 

discreteness should be obvious as seen in the hypothetical 

arrangement in this figure. The size of the depicted 

molecules inside the Lorentz are on the scales of a view 

through a microscope as compared to what is depicted in 

the continuum of the material. It is the same molecule 

(chemical unit), which makes up the inner sphere as well 

as the outer continuum since it is a single crystal sphere of 

the given organic molecule. Each molecule can be 

assigned its due molecular susceptibility and in presence of 

an external magnetic field, and all of these individual 

molecular susceptibilities induce magnetic moments 

respectively at appropriate origin within the molecules. 

Then the magnetic moments approximated as point dipoles 

and at any specified proton site in a molecule at the center, 

the contributions to induced fields from the point dipoles 

of the other molecules can be calculated using a magnetic 

dipole model.  Defining the susceptibility Tensor of a 

molecule by χi and the distance from the dipole origin to 

the specific proton as Ri with the corresponding distance 

vector being Ri, then Equation 1 can be used for the 
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calculation of the contribution from the molecule ‘i’ and 

the summation would be over the index ‘i’ for all the other 

molecules. In the equation [RR]i is the dyadic formed 

from the Vector Ri. 

  σ=  [1/R3i -(3 • [RR]i /R5i)]•Χi                        (1) 
A computer program is used to transform the 

susceptibity tensors from the respective principal axes 

system of the individual molecules into a common 

crystal axes system and the summation is carried out to 

result in the total Shielding tensor contribution in the 

crystal axes system from all the molecules. For each of 

the moment from which the contribution is calculated, 

[the ‘i’th   moment] dropping the index ‘i’, the illustration 

in Fig.3 indicates the details.   
 

R3 R5 
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σyx σyy σyz 
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σT  =  Shielding Tensor         Rv  = Radial vector from Nuclear Site to the point dipole

χT  =  Susceptibility Tensor     |Rv| = R Radial vector length 

Rv = iu x  +  ju y  + ku  z                                                   x 

                                                 [RvRv]T = Dyadic = [x  y  z]     y 

                                                                                                          z 

       χT    - 3. [RvRv]T   
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Fig.3. Equation for calculation of Shielding (induced 
field) by discrete summation of the contributions from 
within the Lorentz sphere. Explicit expression in terms of 
the matrix indicating the required matrix multiplication 
steps for such calculation. 
In the Fig.4 below is a depiction of a typical molecule, 

which can be considered as placed in a lattice site.  

              

 

Proton 

Oxygen  
           
 
 
Fig.4.  A Typical Organic Molecule, which can be located in a 
Lattice Site in the Molecular Single Crystal. This molecule has a 
center of Inversion.                                                       
 

This is a typical molecule, which has been studied by the 

Multiple Pulse HR PMR techniques in Solid State [7]. In 

this particular case, the molecule is planar-elongated 

shaped (approximate D2h symmetry) with dimensions 6Aº 

x 3Aº in a crystal with unit cell dimensions of 10.79Aº x 

10.79Aº x 7.41Aº in the P42/n space group and 4 

molecules per unit cell and the Lorentz sphere could be 

conveniently estimated to be about 100Aº in radius. The 

summation beyond this radius does not add to the total 

contribution significantly any further, thus establishing a 

trend towards a converging value [7]. Suffices here to 

mention the result that this convergent Tensor value when 

subtracted from the experimentally determined Shielding 

Tensor value yields the tensor which truly reflects the only 

molecular contribution by conforming to all the symmetry 

requirements as determined by the molecular point group 

symmetry. Since this subtraction leads to such convincing 

result, the hypothetical Lorentz sphere enclosing the 

central molecule, becomes well defined Fig 5(a) &5(b).   

 

Specified 
Proton Site 

Lorentz 
Sphere 

The Outer Continuum in 
the Magnetized Material 

 

Lorentz 
Sphere of 

Lorentz 
Cavity

Outer Surface Dout

Inner 
Surface
     Din

Din  = - Dout   Hence Dout + Din = 0 
 

Fig.5 The various demarcations required, in an Organic 
Molecular Single Crystalline Spherical specimen, to Calculate 
 the Contributions to the induced Fields at the specified site. 
D out/in values stand for the corresponding Demagnetization 
Factors             
 

 

Fig.5a

Fig.5b
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4. Excursions into the Necessity for Spherical 
Shape  
As can be seen, in Fig.6 [a]&[b], different combinations of 

the sets of external macroscopic shape and inner semi 

micro volume elements can be envisaged. The requirement 

of a spherical shape for the specimen were stipulated for 

bulk susceptibility corrections only because conventionally 

the hypothetical inner volume element was considered as 

spherical since it is most conveniently envisaged shape 

with high symmetry, so that the shape dependent 

demagnetization factor can be inferred by simple 

arguments based on the spherical symmetry [3]. But as 

long as the macroscopic shape results in homogeneously 

magnetized specimen, it is only required that the inner 

volume element be of similar [proportionately same] shape  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
of a reduced dimension, for the induced field at the central 

point to be zero.   The above statement can be further 

substantiated by the fact that the demagnetization factors 

available as tabulated values do not depend upon the real 

size of the specimen, but depend only on the relative ratios 

of the shape determining parameters, in the most general 

case of considered ellipsoidal shapes it is merely the 

elasticity that determines the demagnetization factor  value 

and not the actual size in terms of absolute length units. 

Thus the possibility of outer ellipsoids with 

proportionately same inner hypothetical ellipsoidal cavity 

should result in the same conclusions, as it happens to be 

for spherically shaped specimen with inner hypothetical 

spherical Lorentz cavity.  Thus for the induced field to be 

zero within the magnetized material medium, if the 

magnetization is homogeneous, then, around the specified 

site, it seems, it is necessary to carve out a cavity, which is 

a semi micro volume element, and its shape being 

proportionately the same (to have the same value for the 

demagnetization factor but opposite in sign to that of the 

outer surface) as the macroscopic specimen (outer) shape. 

This has been illustrated in Fig.6.   

 

5. Further Insights for Solid State NMR  
It is important to note that all these revelations about the 

Lorentz sphere comes about because of the fact that the 

angular dependence of the nuclear shielding is smaller in 

magnitude for protons compared to other nuclear systems 

for which similar magnetic resonance measurements are 

made. This is because of the fact that the differences in 

induced fields at the nuclear site depend on the number of 

electrons surrounding those nuclei. This is reflected even 

in the ranges of isotropic chemical shift (shielding) values 

for the various nuclei.  For protons the range is about 

10ppm (for non-hydrogen bonded protons). On the other 

hand, for the 13C nuclei the range is about 250ppm for 

similar variations in the bonding and electronic structures 

in the molecules. Such orders of magnitude smaller values 

for protons compared to other nuclei amenable for NMR 

studies is mainly because the Hydrogen atom has only a 

b 
a 

Outer a/b=1                         outer a/b=0.25  
Demagf=0.33                      Demagf=0.708 
 
inner a/b=1                          inner a/b=1       
Demagf=-0.33                     Demagf=-0.33 
0.33-0.33=0                   0.708-0.33=0.378 
    Conventional combinations of shapes 
                               Fig.6 [a] 

Current propositions of combinations 
Outer a/b=1                outer a/b=0.25 
Demagf=0.33              Demagf=0.708  
 
inner a/b=0.25            inner a/b=0.25   
Demagf=-0.708         Demagf=-0.708 
0.33-0.708=-0.378    0.708-0.708=0 
                       Fig.6 [b]                   



Dr.S.Aravamudhan,Chemistry,NEHU                  Page 6 of 8 8/27/05 
C:\staging\43113E76-5B1E-288A80\in\43113E76-5B1E-288A80.doc                                                                     
single electron around its nucleus and for a positive 

Hydrogen ion, there are no electrons in the outer atomic 

orbits. Thus for the case of protons the Shielding tensor 

anisotropies have relatively small values of about 6ppm 

whereas the anisotropy values can be orders of magnitude 

large for other nuclei. One can consider the magnitude of 

typical molecular diamagnetic susceptibility values and a 

point dipole generated in this diamagnetic molecule at its 

center in presence of external magnetic fields.  At the 

usual intermolecular distances for the nearest neighbors in 

the molecular single crystals, the differences in induced 

field contributions and their angular dependences due to 

the molecular susceptibility tensor values can be 

comparable in magnitudes to the variations in the   

intramolecular shielding anisotropy. Whereas in the same 

molecular systems, the other nuclei present have shielding 

anisotropy values much larger but the intermolecular 

induced field contributions would be the same. All these 

are the considerations for the experiments and the results 

reported in the paper [7], which is the first instance, when 

this significance, as explained above, of intermolecular 

contributions could dramatically set the experimental 

results, disposed for an interpretation, appealing in terms 

of the interactions conforming to the demands of 

molecular symmetry. Since the solid state holds out a rigid 

lattice structure, the angular variations become tractable in 

single crystals. 

When so much is said, all with the presumed spherical 

shape for the hypothetical Lorentz volume element, then 

the practical ordeal of having to make spherical single 

crystal specimen and to orient them for tractable angular 

dependences in terms of the known crystal structures 

makes the experimentalist look for possibilities of relaxing 

the stringent requirement for a spherically shaped 

specimen. Then with the propositions as in Fig 5 of the 

previous sections, it is necessary to find out the kind of 

convergence characteristics that would result for a 

summation within an ellipsoidal volume element instead of 

a summation within a Lorentz sphere. In fact results as 

reported in Fig.1 for convergence characteristics for a 

discrete lattice summation can be obtained for summations 

within the “Lorentz ellipsoids” [8]. Equation (1) used for 

summation within spheres can be used also for 

summations within ellipsoids. This is because enclosing 

the same magnetic dipole among the neighbors within a 

sphere or within an ellipsoid does not alter the form of 

interaction of that individual point dipole and its induced 

field contribution at the specified nuclear site. The 

independence of  every individual magnetic point dipoles 

from the neighboring dipoles must be ensured, since the 

dipole moment under consideration is the characteristic 

property of the molecule and the corresponding molecular 

magnetic susceptibility is not changed by the presence of 

neighboring molecules in a crystal lattice. Hence a 

computer program to take into consideration all the 

molecular magnetic point dipoles within a specified shape 

of the surface enclosing them, would give the result for a 

spherical volume or an ellipsoidal volume by setting 

appropriate boundary conditions with the flexibility to 

vary the size and the shape determining parameters. 

Following the criteria as above the convergence 

characteristics can be calculated for discrete summations 

in semi micro volume elements. These results thus 

obtained surprisingly indicate [9] that, even though the 

trends of the sums obtained for the ellipsoids (with a 

specified ellipticity) vary with the size of the ellipsoids 

around the central proton site, after a certain size the 

summation converged to the same total value as for the 

Lorentz sphere. Thus it seems that, when the ellipsoidal 

specimen shapes of Fig. 6a and 6b are considered, the 

discrete summation near the site would result in the same 

value for the intermolecular contribution for the two cases 

in spite of the fact that in Fig 6a inner shape is the 

conventional Lorentz sphere where as in Fig. 6b the inner 

volume element is a Lorentz ellipsoid. Since we have inner 

and outer shape as ellipsoid, shape dependent induced field 

would be zero. Hence, subtracting this intermolecular 

value (same for both the sphere and ellipsoid) from the 

experimental value should result in intramolecular value 

for the shielding tensor even if the shape of the 

macroscopic specimen is ellipsoidal. Besides the relevance 

of such results for the solid state physics, the prime 
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concern is whether it is possible to circumvent the 

necessity of having to practically make good spheres out 

of every single crystal which is to be studied by multiple- 

pulse line-narrowing technique for HR PMR results in 

solid state. This remains to be answered conclusively in 

spite of these investigations on Lorentz spheres and 

ellipsoids. 
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